A research team, led by Professor Hyesung Park in the Department of Materials Science and Engineering at UNIST has succeeded in manufacturing potentially high efficiency, stable, and scalable perovskite solar cells (PSCs) via vacuum deposition apparatus, a method of fabricating organic light-emitting display devices (OLEDs). Such method is also advantageous for the mass production of batteries, which is expected to further accelerate the commercialization of the PSCs, according to the research team.
In this study, the research team demonstrated highly efficient and stable PSCs with a vacuum-processed Ruddlesden-Popper (RP) phase perovskite passivation layer. By controlling the deposition rate of the RP phase perovskite, which directly influenced its crystallographic orientation, the research team successfully obtained a highly ordered 2D perovskite passivation layer.
The 2D perovskite layer passivated the bulk perovskite defects and promoted the charge transport efficiency in the PSC. As a result, the BABr (V) inverted PSC has achieved a champion PCE of 21.4% in the resulting device with outstanding humidity and thermal stability.
This number is by far the highest ever achieved for PSCs formed by vacuum deposition. In addition, it showed enhanced long-term operational stability, such as maintaining 62% of its initial PCE (average) when operated for for 1,000 hours under 60-70% relative humidity at room temperature, even without device encapsulation.
“Our findings provide a new perspective toward further improving the performance of PSCs by mitigating nonradiative recombination pathways in perovskites,” noted the research team.
The findings of this research were made available in June 2022, ahead of its publication in the journal, Energy and Environmental Science (ESS, IF = 39.714). This study has been supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (MSIT).
Related Links
Ulsan National Institute of Science and Technology(UNIST)
All About Solar Energy at SolarDaily.com
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain. With the rise of Ad Blockers, and Facebook – our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don’t have a paywall – with those annoying usernames and passwords. Our news coverage takes time and effort to publish 365 days a year. If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution. |
||
SpaceDaily Contributor $5 Billed Once credit card or paypal |
SpaceDaily Monthly Supporter $5 Billed Monthly paypal only |
Second batch of Airbus’ Sparkwing solar panels selected by Aerospacelab
Leiden, Netherlands (SPX) Oct 13, 2022
An additional six of Airbus’ Sparkwing solar panels have been selected by Aerospacelab to accommodate their ramp up towards higher satellite production volumes. The panels are designed and produced at Airbus’ Dutch site in Leiden. The ordered configuration, consisting of two single panel wings, each measuring 1070x570mm, is identical to the set recently delivered by Airbus for the first flight model of Aerospacelab’s Very High Resolution (VHR) mission.
The stiffness of the solar panels concept for … read more