An international research team led by the University of Gottingen has, for the first time, observed the build-up of a physical phenomenon that plays a role in the conversion of sunlight into electrical energy in 2D materials. The scientists succeeded in making quasiparticles – known as dark Moire interlayer excitons – visible and explaining their formation using quantum mechanics.
The researchers show how an experimental technique newly developed in Gottingen, femtosecond photoemission momentum microscopy, provides profound insights at a microscopic level, which will be relevant to the development of future technology. The results were published in Nature.
Atomically thin structures made of two-dimensional semiconductor materials are promising candidates for future components in electronics, optoelectronics and photovoltaics. Interestingly, the properties of these semiconductors can be controlled in an unusual way: like Lego bricks, the atomically thin layers can be stacked on top of each other.
However, there is another important trick: while Lego bricks can only be stacked on top – whether directly or twisted at an angle of 90 degrees – the angle of rotation in the structure of the semiconductors can be varied. It is precisely this angle of rotation that is interesting for the production of new types of solar cells.
However, although changing this angle can reveal breakthroughs for new technologies, it also leads to experimental challenges. In fact, typical experimental approaches have only indirect access to the moire interlayer excitons, therefore, these excitons are commonly termed “dark” excitons.
“With the help of femtosecond photoemission momentum microscopy, we actually managed to make these dark excitons visible,” explains Dr. Marcel Reutzel, junior research group leader at the Faculty of Physics at Gottingen University.
“This allows us to measure how the excitons are formed at a time scale of a millionth of a millionth of a millisecond. We can describe the dynamics of the formation of these excitons using quantum mechanical theory developed by Professor Ermin Malic’s research group at Marburg.”
“These results not only give us a fundamental insight into the formation of dark Moire interlayer excitons, but also open up a completely new perspective to enable scientists to study the optoelectronic properties of new and fascinating materials,” says Professor Stefan Mathias, head of the study at Gottingen University’s Faculty of Physics.
“This experiment is ground-breaking because, for the first time, we have detected the signature of the Moire potential imprinted on the exciton, that is, the impact of the combined properties of the two twisted semiconductor layers. In the future, we will study this specific effect further to learn more about the properties of the resulting materials.”
Research Report:“Formation of moire interlayer excitons in space and time”
Related Links
University of Gottingen
All About Solar Energy at SolarDaily.com
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain. With the rise of Ad Blockers, and Facebook – our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don’t have a paywall – with those annoying usernames and passwords. Our news coverage takes time and effort to publish 365 days a year. If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution. |
||
SpaceDaily Contributor $5 Billed Once credit card or paypal |
SpaceDaily Monthly Supporter $5 Billed Monthly paypal only |
Colorful solar panels could make the technology more attractive
Washington DC (SPX) Aug 19, 2022
Solar panels aren’t just for rooftops anymore – some buildings even have these power-generating structures all over their facades. But as more buildings and public spaces incorporate photovoltaic technologies, their monotonous black color could leave onlookers underwhelmed. Now, researchers reporting in ACS Nano have created solar panels that take on colorful hues while producing energy nearly as efficiently as traditional ones.
Solar panels are typically a deep black color because their job is to … read more